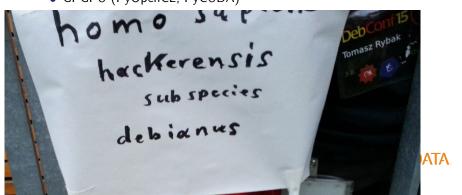
Oracle to PostgreSQL replication and migration

Tomasz Rybak

TeraData tomasz.rybak@teradata.com

PgConfEU, 2015-10-29


Outline

- Our system
- ORQ
- Problems and solutions
 - Performance
- Our changes
- Process
 - Lesson learned
- Summary

Who am I

- Professionally
 - DBA at Teradata in Muenchen
- FLOSS
 - Debian Maintainer (with open NM process)
 - Python
 - GPGPU (PyOpenCL, PyCUDA)

Disclaimer

All opinions presented here are my own, and my employer is not responsible for them.

Big picture

- Many databases
 - PostgreSQL
 - Oracle
- Databases created over many years
- Oracle
 - First database; initial schema
 - Quite old (10g), currently unsupported version
- Decision
 - Unification on PostgreSQL
 - Unification of schema

Oracle

Over 700 tables

```
widest table over 600 columns largest table 5.5G rows database size almost 1.5TB
```

- Our first database
- Old hardware
 - Magnetic hard drives
 - High IO
 - Limited disk space

Production

- Live systems
- Clients' jobs constantly running
 - Cannot stop and migrate data offline
- Cannot add much load
 - Quite high IO
- We are already using Londiste on PostgreSQL side

Solution

- ORQ from 2ndQuadrant
 - Similar to londiste
 - ... but not identical
- Mostly Python
 - cx_Oracle
 - psycopg2
- Quite a bit of PL/SQL

Architecture

- Code on Oracle
 - Triggers
 - Table with events
 - Metadata tables: subscribers, etc.
- PostgreSQL
 - Extension
 - Just information about tables
- Daemons

Daemons

orqd ticker, allowing for determining when to apply transaction changes

orgrep replicator; only one (unlike in londiste)

orgrep-admin management tool

Oracle

- orq user and schema
- triggers
- configuration tables
 - ticks
 - queues
 - daemon status
 - trigger names
 - and not the list of replicated tables

PostgreSQL

- user
- extension
- only one table: list of replicated tables

Queues

- For storing events
 - Insert, Update, Delete
 - Also adding and removing table
- Three (not one) tables for queue
 - Tables rolling
 - Helps with cleaning old events
- Need to prevent replication from rolling tables with long transactions
- Need to determine from which queues to read events

Multi-table queues

- Helps with changes to event tables on live system
- More difficult debugging
- More complicated event queries
- orqd
 - Determines when to rotate based on ticks seen by orgrep
 - Deletes old ticks
- Lack of rotation suggests some stuck transaction

Encoding

- Everything should be in UTF8
- Two ways of inserting data on PostgreSQL side
 - initial copy
 - event applying
- Problems for PostgreSQL: Not always valid UTF8 characters
- Difficult debugging
 - cx_Oracle uses Oracle libraries
- Force Oracle to give use UTF8
- Both as parameter to cx_Oracle and as environment variable
- Took lot of checking and searching
- Still not always perfect
 - Additional code to check and fix text fields

Object names

- Oracle size limit: 30 characters
- Triggers: table name and suffix
- Need to manage triggers
- Additional table with mapping
- table name ⇒ shortened trigger name

Triggers

- Initially one trigger for all operations
- Generated per table, using list of columns
- For many tables it was bigger than 32k
 - We had to move to CLOB from varchar
- For some of tables (500 columns) generated 560kB of code
- Much larger than limit
 - Documentation: 32kB
 - Tests: 90kB

Triggers - cont.

- Complexity matters more than size
- We had to split trigger to 3, to decrease number of statements
 - It allowed for simplifying of trigger code
- Static list of columns
 - Causes problems with schema migration

Events

- Need to group transaction statements
- Need to order transactions
- ora_rowscn
 - Virtual column
 - Similar to txid
 - ... but not really
- Each event had ora_rowscn
 - Order by it
- Ticks (from orqd) determine which SCN to use

System Change Number

- ora_rowscn is virtual column
 - No index!
 - Full Table Scan for all events
- Problematic when more than few hundred thousands of events
- Decrease time of rolling event tables
- Did not help

Index

- Need to use index
 - Cannot on ora_rowscn
- Create ordinary column and fill in
 - SCN given at the end of transaction
 - Let's use dbms_fallback.get_current_change_number!
- Big mistake: It's changing during transaction!
- Caused problems more than once

Index - cont.

- Keep the column but update it on batch
 - 10g: cannot use ora_rowscn in non-select
 - Loop over transaction
- Not fast enough for our needs
- Tried to use during tick generation but it didn't work

Back to blackboard

- SCN issued at the end of transaction
- Before that column is empty
- Problem
- Two problems?
 - Grouping events into transactions
 - Transactions ordering
- Solution: separate grouping and ordering
 - Events use local transaction id
 - Not ordered, using implementation details
 - File, slot, transaction inside slot

Changes

- Additional table for transactions
- Additional trigger, per statement
- Check whether transaction exists, to avoid bloat
- One row per transaction we can use SCN
- Problem with joining tables and rotating
- Use CTE/WITH
- local_transaction_id exists only after DML
- Problem when adding or removing table

Initial copy

- Not very fast: less than 2M rows per minute
 - Similar speed on sqlplus
- Tried different approaches
- Finally using Java
 - Copy done in separate process
- Java was fast for narrow tables, but slower for wide ones
 - JDBC vs. cx_Oracle
 - Different GC

Schema differences

- Oracle uses schema per user
- Tables are prefixed when read by different user
- Not in PostgreSQL
- So we use "different" table names for Oracle and PostgreSQL

Logging

- Error in trigger
- Log it, and otherwise ignore
- Do not rollback parent transaction!
- EXCEPTION WHEN OTHERS THEN ...
- Just like "try: except:" in Python
- MERGE (UPSERT) to log number of errors
- Ignore errors during logging

Trigger compilation

- By default trigger gets compiled on first usage
 - Slowing first transaction
 - Catching problems on production
- We forced compilation of trigger during creation
 - Logging any problems
 - Also removing triggers and table from replication in such a case

Performance

- Dropping indices before initial copy
- Recreating them later
 - Similarly for FKs, constraints, etc.
- Already done in Londiste
- Problem with restoring after errors

Security

- Separate user
 - Although with some special privileges
- Separate tablespace
- Logging errors

Schema change

- Cleaning schema on Oracle
- Unifying as much as possible with PostgreSQL

Live systems

- Schema migrations on active databases
- Need to be applied on replica
- Regeneration of triggers

First attempt

- Missing tick on day of switch
 - Removed during table roll
 - Caused by dbms_flashback.get_current_system_change
- orgrep did not know what to do
- I was at DebConf
- To many unprocessed events when discovered
- Led us to discover difference between PostgreSQL and Oracle

Interlude

- Solve SCN problem
 - Many tried solutions
- Filled up tablespace
- Slow MERGE
 - Lock contention

Second attempt

- Intensive work on ORQ
 - Java for copy
 - Usage of transaction id
- Direct connection between Postgres and Oracle
 - To avoid problems during network changes
- Quite fast
- Failed
 - Broken storage
 - Logging (and ignoring) errors save us here

Truisms

- Documentation helps
 - When it exists
- Google helps
 - When it points to right answers
 - Oracle versions
 - Oracle vs. MySQL

Tailored solutions

- Existing system
 - We changed it for our needs
- We used quick rolls, to avoid keeping many events
- Limited look-back only one table back

Quirks

- SELECT AS OF SCN
 - Interesting way of looking into near past
- MERGE
 - UPSERT
 - Did nor work correctly
 - Maybe I made some errors
- clob vs. varchar
 - Artificial limitation
 - Different code to deal with it

Hints

- Let the flamewar begin!
- Did not work for us
 - Neither for copy
 - Nor for event queries
- Parallel copy did not work
 - All tables of degree 1
- Suggestion of index usage ignored
- prefetch (array size in cx_Oracle) did not have much effect

Many attempts

- Practice makes perfect
- Monitoring of databases
 - ...and replication
- Transaction size statistics
 - Many changed only one row
 - Some few dozen thousand changes
 - One changed 1.1M of rows

Result

We did it! (On Sunday)

- Many thanks:
 - Teradata team
 - 2ndQuadrant team

QA

- Thank you for your attention
- Questions?
- Contacts to me
 - Blog: http://tomaszrybak.wordpress.com/
 - Email:
 - tomasz.rybak@teradata.com
 - tomasz.rybak@post.pl
 - Skype: rybakthomas
 - GTalk: tomasz.rybak@gmail.com

